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Introduction
Organ intercommunication occurs in multiple physiological and 
pathological contexts.1 The liver is one of the main organs that es-
tablishes important crosstalk with other organs to maintain whole-
body homeostasis, supported by the interplay of multiple signaling 
pathways.1 Interestingly, the network of key signaling pathways 
responsible for orchestrating morphogenesis during embryonic de-
velopment is reactivated during wound healing and tumorigenesis.2

The liver sustains active communication with other organs, 
which is crucial for the regulation of multiple cellular processes.1 In 
liver regeneration, for instance, the liver communicates with other 
organs, such as the brain, pancreas, intestine, and heart, mainly 
through cell-cell communication using chemical messengers such 

as hormones, cytokines, and growth factors.3 This cellular com-
munication is crucial to restoring hepatic homeostasis after any 
damage. Among all these signals, the transforming growth factor-β 
(TGF-β) and HIPPO signaling pathways are particularly relevant, 
exerting critical functions as tumor suppressors and exhibiting im-
portant crosstalk to regulate liver development, size, and regenera-
tion. This review focused on describing the interplay between the 
TGF-β and HIPPO signaling pathways in distinct hepatic contexts, 
including the maintenance of liver homeostasis in health, liver re-
generation, and the progression of liver diseases such as hepatitis, 
fibrosis, cirrhosis, and cancer.

Liver physiology and the variety of hepatic contexts in health 
and disease
The liver stands as a multitasking organ, undertaking crucial func-
tions essential for overall well-being. Among its vital roles, the 
liver manages the metabolism of nutrients, aids in digestion by 
producing bile for fat digestion, and actively participates in the 
detoxification of blood by processing toxins, drugs, and viruses. 
Additionally, the liver synthesizes proteins for blood plasma, 
regulates blood clotting, and serves as a frontline immune tis-
sue, contributing significantly to the body’s immune response. 
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The hepatic lobules are the functional units of the liver, populated 
by different cell types that maintain constant intercellular commu-
nication through various signaling pathways in different contexts. 
Hepatocytes are the most abundant parenchymal cell type (80%) in 
the liver, whereas the non-parenchymal cells (20%) include hepatic 
stellate cells (HSCs), Kupffer cells, liver sinusoidal endothelial cells 
(LSECs), lymphocytes, and biliary epithelial cells (BECs) or chol-
angiocytes.3 The hepatic tissue is crucial during all stages of organ-
ism development and shows relevant differences regarding hepatic 
cell proliferation and function in early embryonic stages compared 
to adulthood. For instance, in adulthood, the liver is an organ whose 
cells rarely divide, remaining quiescent most of the time; it is esti-
mated that one cell among 20,000 cells undergoes mitosis.3

Contrary to what is observed in the adult mammalian liver, where 
hepatic cells are typically quiescent, fetal hepatoblasts migrate to-
gether as cords while inserting between mesenchymal and epithelial 
cells to form the primitive liver. Hepatoblasts are bipotential cells 
that actively proliferate and differentiate into hepatocytes and chol-
angiocytes.4 Once the hepatic vasculature is constructed, the fetal 
liver performs hematopoiesis around 10.5–12.5 days post-fertiliza-
tion. Despite the technical issues involved in studying embryonic 
stages, we have a good understanding of the main phases involved in 
early liver development (progenitor specification, cell type-specific 
differentiation, and outgrowth) and the role of the placenta in pro-
viding oxygen, calcium, and possibly bile acids.2,4

An amazing property of the liver in adult vertebrates is its ability 
to regenerate. After exposure to stimuli provoking the loss of hepatic 
mass (e.g., the 70% partial hepatectomy (PH) model) or tissue dam-
age, a phenomenon of rapid recovery of the original liver size occurs 
through a compensatory hyperplasia mechanism along with restora-
tion of hepatic architecture and functions, known as liver regenera-
tion (Fig. 1). Interestingly, other organs can undergo regeneration 
but not at the same scale as the liver, whose size is strictly regu-
lated through an intricate signaling network. This molecular toolkit, 
evolutionarily acquired and improved in mammals,3 includes pro-
inflammatory and inhibitory cytokines, growth factors, members 
of different signaling pathways and transcription factors, as well 
as diverse epigenetic mechanisms. Together, they participate in the 
activation and deactivation of genes in a highly regulated manner.

It is important to note that all hepatic cell types contribute to 
recovering the liver mass and express outstanding functional and 
phenotypic changes. For instance, during the activation process of 
HSCs, these cells lose vitamin A storage, acquire a contractile my-
ofibroblast-like phenotype, and synthesize distinct collagen types. 
Kupffer cells produce pro-inflammatory cytokines to promote 
changes in the hepatocytes that turn them responsive to growth 
factors. During liver regeneration after a 70% PH, all hepatic cells 
are activated by cytokines (e.g., interleukin-6 (IL-6) and tumor 
necrosis factor-alpha) and growth factors (e.g. hepatocyte growth 
factor and epidermal growth factor) that promote the overexpres-
sion of specific genes, allowing the cells to enter the cell cycle and 
go through each stage of regeneration (priming, proliferative, and 
termination phases). This process takes approximately seven days 
in rats until the mass, architecture and function of the liver are 
restored. All liver cells contribute to the process, with hepatocytes 
being the first to divide, followed by BECs, Kupffer cells, HSCs, 
and finally LSECs to complete the reconstruction of extracellular 
matrix (ECM) architecture and hepatic vasculature.3

Significantly, when the regenerative capabilities of the liver are 
surpassed, alternative scenarios unfold wherein liver cells mani-
fest altered phenotypes in response to chemical or physical damage 
(Fig. 1). For instance, HSCs undergo prolonged activation with 

sustained exposure to damage from drugs, alcohol, or a high-fat 
diet. As a result, HSCs adopt a myofibroblast-like phenotype, lead-
ing to excessive production of ECM proteins, forming a perfect 
microenvironment for the development of fibrosis and cirrhosis, 
eventually leading to liver failure and, in some cases, hepato-
carcinogenesis. The progression of fibrosis involves the gradual 
replacement of parenchymal tissue with scar tissue, altering the 
hepatic architecture and increasing stiffness. In the resolution 
stage of fibrosis, the liver returns to homeostasis, and the activated 
HSCs can be eliminated via apoptosis promoted by macrophages 
with pro-resolution properties.5 However, if the liver damage is 
chronic, cirrhosis becomes a point of no return, characterized by 
severe scarring of the liver and significantly increasing the risk of 
developing hepatocellular carcinoma (HCC) (Fig. 1). Liver cancer, 
one of the deadliest cancers worldwide, primarily manifests as two 
types: HCC (malignant transformation of hepatocytes) and intra-
hepatic cholangiocarcinoma (ICC) (cancer of BECs).

In the aforementioned hepatic contexts, numerous signaling path-
ways assume pivotal roles. Therefore, understanding the intricate 
networks of signaling pathways contributing to the progression of 
liver disease is crucial for identifying potential therapeutic targets.6 
Given the significant impact chronic liver diseases have worldwide, 
we have recently reviewed various interdisciplinary efforts aimed 
at mitigating this trend.7 In extreme cases of liver damage where 
patients may need a liver transplant, the situation is exacerbated by 
the low number of donors. Thus, options for patients with acute liver 
failure or severe chronic liver diseases include extracorporeal liver 
support devices that function while waiting for an organ donor. An-
other alternative provided by tissue engineering is the “recycling” 
of ECM obtained after liver decellularization for repopulation with 
healthy liver cells (bioengineered liver), which can eventually be 
transplanted.7 Recently, Hans Clever’s group has provided a promis-
ing alternative for personalized medicine, demonstrating that human 
and mouse hepatocytes can be cultured long-term as organoids with 
the potential to engraft and proliferate in a damaged liver.8 Targeting 
key signaling pathways has been another important strategy to im-
prove liver regeneration and restore homeostasis in hepatic diseases. 
Nevertheless, the main drawback of inhibiting key pathways is the 
potential cytotoxic side effects on normal cells.

Actions of TGF-β and HIPPO signaling pathways in the liver
The HIPPO and TGF-β pathways exert crucial functions in he-
patic physiology by regulating essential cellular processes such 
as proliferation, differentiation, and apoptosis. These pathways 
control liver mass, architecture, and function from embryonic de-
velopment through adulthood. The HIPPO and TGF-β signaling 
pathways have pleiotropic effects, and any gain or loss of their 
function, as well as aberrant actions, can lead to diseases such as 
chronic liver inflammation, fibrosis, and cancer.9–11

TGF-β is the prototype of a family of multifunctional poly-
peptides, including TGF-βs, ACTIVINs, INHIBINs, and BMPs 
(bone morphogenetic proteins). TGF-β initiates signaling through a 
complex of two types of transmembrane Ser/Thr kinase receptors, 
TβRII and TβRI (or activin-like kinase 5), which transduce signals 
via downstream effectors named (receptor-regulated SMADs) R-
SMADs, such as SMAD2 and SMAD3. After phosphorylation by 
the type I receptor, these proteins form complexes with the common-
SMAD4 for their translocation to the nucleus, where the SMAD2/3/4 
complex binds to DNA sequences (tandem repeats of GTCT or 
AGAC), known as SMAD-binding elements (SBE) located on 
TGF-β target genes to tightly control their expression (Fig. 2).12,13 
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TGF-β signaling is negatively regulated by multiple factors. For in-
stance, the Sloan Kettering Institute (SKI) and SKI-novel (SNON) 
proteins are transcriptional cofactors that function as negative regu-
lators of TGF-β signaling by associating with SMAD proteins to 

actively turn off the TGF-β canonical pathway through negative 
feedback mechanisms.6,14 The TGF-β/SMAD signaling pathway 
becomes activated during murine liver regeneration, with SKI and 
SNON proteins being upregulated to modulate the magnitude and 

Fig. 1. The roles of HIPPO and TGF-β signaling pathways play in distinct hepatic contexts present in health and disease. BEC, biliary epithelial cells; EMT, 
epithelial-mesenchymal transition; HSC, hepatic stellate cells; TAZ, transcriptional co-activator with PDZ-binding motif; TGF-β, transforming growth factor-
beta; YAP, Yes-associated protein.

Fig. 2. The canonical HIPPO and TGF-β signaling pathways. CYR61, cysteine-rich angiogenic inducer 61; FT, factors of transcription; LATS, large tumor sup-
pressor; MOB, mob kinase activator; MST, mammalian sterile 20-like kinase; SBE, SMAD-binding elements; SKI, Sloan Kettering Insitute; SKIL, SKI-like; SNON, 
SKI-novel; TAZ , transcriptional co-activator with PDZ-binding motif; TBE, TEAD-binding elements; TEAD, transcriptional enhanced associate domain; TGF-β, 
transforming growth factor-beta; YAP, Yes-associated protein.
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duration of the TGF-β/SMAD pathway functions in this context 
(Fig. 2).15–17 Additionally, evidence shows that SNON/SKI protein 
stability is differentially regulated by actin cytoskeleton dynamics 
in hepatic cells, similar to how YAP/TAZ (Yes-associated protein 
1/transcriptional co-activator with PDZ-binding motif) stability is 
controlled by F-ACTIN cytoskeleton rearrangements. Intriguingly, 
there is evidence that SNON promotes TAZ protein stabilization and 
signaling in human breast cancer by sequestering LATS kinase.18 
Given the relevance of HIPPO/TGF-β crosstalk in liver regenera-
tion, this positive regulation of TAZ by SNON deserves investiga-
tion in the hepatic context.

In liver cancer, the tumor microenvironment dictates that 
TGF-β functions as a tumor suppressor in early stages but becomes 
a tumor promoter in advanced stages.19 Snorri Thorgeirson’s group 
reported two main TGF-β-dependent gene expression signatures in 
mouse hepatocytes that are useful for predicting clinical outcomes 
in human liver cancer and distinguishing between subgroups of 
HCC.20 An early TGF-β signature (high expression of anti-prolif-
erative and anti-apoptotic genes) correlated with a good prognosis 
for patients with liver cancer, whereas a late TGF-β signature (high 
expression of invasion-related, epithelial-mesenchymal-transition 
(EMT), and anti-apoptotic genes) was associated with tumor recur-
rence and metastasis.20,21

The HIPPO signaling pathway is regulated by diverse upstream 
signals such as cell polarity, cell adhesions, mechanical forces, 
cytoskeleton dynamics, G protein coupled receptors (GPCR) li-
gands, and some stress signals.22 The HIPPO pathway comprises 
two core kinases, mammalian sterile 20-like kinase 1 (MST1) 
and MST2, which activate large tumor suppressor 1 (LATS1) and 
LATS2 kinases through phosphorylation.10,23,24 A cytoskeletal pro-
tein named NF2/moesin-ezrin-radixin like (MERLIN) regulates 
MST1/2 kinases and their adaptor protein SAV1/WW45, while 
activators MOB kinase activator 1A (MOB1A) and MOB1B regu-
late LATS1/2. The main effectors of the HIPPO signaling pathway 
are the transcriptional co-regulators TAZ/WW domain-containing 
transcription regulator 1 (WWTR1) and YAP, which are negatively 
regulated by HIPPO signaling (Fig. 2). In the liver, signals like me-
chanical forces generated by the F-ACTIN cytoskeleton and high 
energy levels may negatively regulate HIPPO signaling. When 
the HIPPO pathway is active, the LATS1 and LATS2 kinases 
phosphorylate YAP and TAZ, leading to their inactivation. Other 
post-transcriptional modifications can modulate YAP/TAZ protein 
stability and activity, such as ubiquitination, methylation, acetyla-
tion, and O-GlcNAcylation.25 YAP/TAZ inactivation might occur 
through several mechanisms, such as their phosphorylation result-
ing in exclusion from the nucleus, or their ubiquitination promot-
ing degradation via the proteasome.10,26 When the HIPPO pathway 
is inactive, MST1/2 and LATS1/2 kinases are inactivated, allow-
ing YAP and TAZ to become active and translocate to the nucleus 
to regulate gene expression. YAP and TAZ are ubiquitously ex-
pressed transcriptional cofactors that share similar structures and 
functions and may be regulated by similar mechanisms, although 
they have different roles from development to adulthood. Notably, 
YAP/TAZ co-regulators can interact with many other transcrip-
tion factors besides transcriptional enhanced associate domain 
(TEADs), such as RUNX2 (runt-related transcription factor 2), 
TBX5 (T-box transcription factor 5), P73, and SMADs, allowing 
for the control of specific context-dependent gene expression (Fig. 
2).10 Thus, they can regulate the expression of target genes related 
to several cellular processes, such as proliferation, differentiation, 
and EMT.10,27–29

In the liver, the HIPPO pathway is one of the main signaling 

pathways sustaining hepatic physiology. It plays a crucial role 
in maintaining the quiescence of hepatic cells and contributes to 
proper metabolic zonation of the liver.30,31 Consequently, deregu-
lation of the HIPPO pathway, along with other factors, has been 
associated with metabolic diseases such as type 2 diabetes, and 
non-alcoholic fatty liver disease. Moreover, overexpression of 
YAP and TAZ in the liver promotes cell proliferation that may lead 
to hepatomegaly and eventually hepatocarcinogenesis, revealing 
an outstanding role in regulating organ size in various scenari-
os.27,32 For instance, during liver regeneration, HIPPO signaling 
becomes relevant for controlling mouse liver size, as shown in the 
conditional liver double knockout of YAP and TAZ, where regen-
eration is impaired, causing a longer restoration period for liver 
mass.27,33 In contrast, studies in young mice show a redundancy 
of other pathways that permit liver regeneration to take place but 
at a slower rate.34 When mice livers are exposed to chronic dam-
age, liver repair is associated with fibrosis, and in this context, 
HSCs are activated for extended periods, producing excess ECM 
proteins. YAP is activated during HSC activation triggered by dif-
ferent stimuli and is associated with increased ECM protein depo-
sition in the long term. Meanwhile, other non-parenchymal cells, 
such as LSEC, also show YAP activation, promoting angiogenesis 
and thereby increasing mice liver damage.35 In these hepatic con-
texts, TGF-β and HIPPO pathways converge to regulate organ 
size, regeneration, and fibrosis, but the mechanisms involved re-
quire further studies.

Furthermore, genetic alterations of some HIPPO signaling 
components, such as knockouts (NF2, SAV1/WW45, or MST1/2) or 
overexpressions (YAP or TAZ), promote liver overgrowth and tu-
morigenesis.30,36–41 Although DNA mutations in the main HIPPO 
pathway components are rare, irregular activation of YAP/TAZ in 
liver cancer has been described, although the molecular mecha-
nisms involved remain uncertain.10,41–46 In liver cancer, YAP/TAZ 
activation can also be regulated by many extrinsic signals, such as 
growth factors, cytokines, stress signals, altered metabolic condi-
tions, autophagy, and mechanical forces.47–55 Intriguingly, YAP/
TAZ also cooperate with different signaling pathways in a context-
dependent manner, such as TGF-β, RTK/PI3K, WNT, and NOTCH 
signaling.56–60

Crosstalk between TGF-β and HIPPO signaling pathways in 
distinct hepatic contexts
A major crosstalk between the HIPPO and TGF-β pathways oc-
curs to control liver size and regeneration, while their deregulation 
promotes fibrosis and hepatocarcinogenesis. It is well known that 
both pathways inhibit cell proliferation and maintain hepatocyte 
homeostasis, acting primarily as tumor suppressors.19,57,61 HIPPO 
downstream effectors, such as TEAD and TAZ/YAP, can function 
as cofactors of the TGF-β/SMAD canonical pathway, since some 
gene promoters contain both SBE and TBE (TEAD-binding ele-
ments) (Fig. 3). When HIPPO signaling is inactive, dephosphoryl-
ated YAP and TAZ proteins translocate to the nucleus, where they 
associate with members of the TEAD transcription factor family 
to bind target gene promoters, inducing the expression of genes 
involved in cell proliferation and inhibition of apoptosis.62 In the 
context of low cell density, the HIPPO pathway is likewise inac-
tive, allowing YAP/TAZ to facilitate the accumulation of SMAD 
proteins in the nucleus in response to TGF-β. Consequently, 
SMAD/YAP/TAZ complexes can synergize transcriptionally (Fig. 
3).57,60,61,63–65 In contexts such as breast cancer cells, where TGF-β/
SMAD signaling is active, this pathway may cooperate with YAP/
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TAZ to induce fibrogenic factors, such as CTGF, NEGR1, and 
UCA1, as well as genes encoding ECM proteins.66 Therefore, the 
close relationship between TGF-β and HIPPO pathways in the de-
velopment of fibrosis and cirrhosis merits further studies.

The involvement of the HIPPO and TGF-β pathways in tumo-
rigenesis has been extensively investigated. It is well-established 
that the interplay between these pathways can induce the EMT 
process.67 EMT is a key hallmark of cancer related to metastasis, 
although it also becomes activated during development and wound 
healing. In this process, epithelial cells can completely or partially 
transdifferentiate (partial EMT), losing epithelial markers and ac-
quiring characteristics similar to mesenchymal cells. This is cru-
cial for cancerous cells, as EMT confers features such as resistance 
to apoptosis, drug resistance, cancer stem cell characteristics, and 
invasive abilities.68,69 Recently, it was shown that the TGFB1 gene 
is overexpressed in the murine AS-30D hepatocarcinoma, and 
more importantly, treatment of these cells with TGF-β increased 
the levels of phospho-SMAD2 and the expression of several mes-
enchymal markers.70 Given the potential of AS-30D cells to un-
dergo EMT, the plausible interplay between the TGF-β and HIPPO 
signaling pathways in this HCC model is evident.

EMT is regulated by different signals depending on the con-
text. For instance, TGF-β signaling may cooperate with YAP/
TAZ to induce EMT in liver cancer.67,70 The expression of TAZ 
is enhanced in cancer cells from brain, breast, pancreas, and liver 
tumors,42,71–74 and appears to mediate cancer stem cell character-
istics promoted by TGF-β/SMADs.60,63,64 In liver cancer, YAP 
and TAZ promote cellular proliferation, stem cell marker expres-
sion, and EMT.73,75–77 In fact, EMT may serve as a self-sustaining 
mechanism for TAZ expression and activation.74 The molecular 
mechanisms regulating TAZ/WWTR1 gene expression are poorly 
studied. Thus far, the TAZ/WWTR1 gene is regulated by several 
transcriptional factors such as STAT3, SMAD3, MRTF, and HIF1, 
whereas different miRNAs regulate TAZ mRNA translation. Re-
cent evidence shows that TGF-β cytokine uses distinct molecular 
mechanisms to control TAZ/WWTR1 gene expression in a context-
dependent manner: Firstly, a non-canonical TGF-β pathway can 

increase TAZ levels in murine fibroblasts and some pig epithelial 
cells in a P38/MRTF-dependent and SMAD3-independent man-
ner.78 Secondly, the synergistic action of IL-6 and TGF-β pathways 
is essential for inducing TAZ/WWTR1 gene expression in mouse 
CD4+ lymphocytes, leading to their differentiation into Th17 cells. 
This phenomenon is intriguing given that TAZ deficiency pro-
motes the differentiation of lymphocytes toward regulatory T cells 
(Treg).79 Notably, the TGF-β pathway regulates TAZ/WWTR1 gene 
expression depending on the cellular context and species-specific 
gene promoter. This evidence suggests that TGF-β predominantly 
controls TAZ/WWTR1 gene expression through Smad-independent 
pathways or in collaboration with other signaling pathways such 
as IL-6/STAT3.78,79

There is evidence in human HCC samples of a correlation be-
tween the upregulation of TGF-β and HIPPO pathway compo-
nents with increased levels of EMT markers, as shown by ana-
lyzing LIHC public datasets.80,81 In contrast to previous reports, 
we recently described that the TGF-β/SMAD pathway promotes 
human TAZ/WWTR1 gene expression and enhances TAZ protein 
levels in human cancer hepatic cells. Thus, TAZ is a primary target 
of TGF-β signaling, a major pathway in hepatic cancer develop-
ment.80 Moreover, our investigation revealed that the human TAZ/
WWTR1 gene promoter encompasses both canonical and non-
canonical SBEs. Particularly noteworthy is the identification of a 
TRE (TGF-β-response element) within the TAZ/WWTR1 gene pro-
moter, formed by canonical SBEs.80 Consequently, our findings 
indicate that the TGF-β/SMAD canonical pathway plays a regula-
tory role in TAZ expression within human hepatic cancer cells by 
amplifying TAZ/WWTR1 gene transcription and enhancing TAZ 
protein stability (Fig. 3). Our findings suggest that TGF-β/SMAD 
signaling might cooperate with TAZ in liver cancer progression, 
probably through the regulation of a specific gene signature. Fur-
thermore, the conflicting evidence suggesting that TGF-β regulates 
TAZ/WWTR1 gene expression through SMAD or non-SMAD sign-
aling needs further investigation to elucidate the relevance of the 
differential regulation of TAZ/WWTR1 gene expression depending 
on the cellular context and species-specific gene promoter.

Fig. 3. Gene expression is regulated by the HIPPO/YAP/TAZ and TGF-β/SMAD crosstalk in the liver. BEC, biliary epithelial cells; EMT, Epithelial-Mesenchy-
mal Transition; HNF4α, hepatocyte nuclear factor alpha; SBE, SMAD-binding elements; TAZ, transcriptional co-activator with PDZ-binding motif; Tbs, TEAD 
binding sites; TGF-β, transforming growth factor-beta; YAP, Yes-associated protein.
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The crosstalk between TGF-β and HIPPO pathways is crucial 
in various hepatic contexts, from embryonic development to ho-
meostasis and disease in adulthood. The interplay between these 
pathways may generate a TGF-β/SMAD/YAP/TAZ axis that like-
ly controls specific gene expression networks depending on the 
different hepatic contexts present in liver health or disease (Fig. 
3). Studies on mouse embryo development show that TGF-β and 
HIPPO pathways cooperate to promote mesoderm to endoderm 
differentiation during liver formation and maturation; in this con-
text, YAP activation in hepatoblasts promotes increased TGF-β 
signaling, leading to hepatoblast differentiation into BECs.2,11,31 
Moreover, some murine models, such as mice liver-conditional 
KO of LATS1/2 kinases are used to study the fate of hepatic pro-
genitors.82 In BECs obtained from these livers, the loss of LATS1/2 
promotes SMAD2/3 nuclear localization and the binding of YAP to 
the mouse TGFB2 gene promoter, resulting in the upregulation of 
genes such as TGFB2, CK7/KRT7, and CK9/KRT9. YAP also pro-
motes the downregulation of HNF4α (Hepatocyte Nuclear Factor 
4 alpha) by binding to the mouse HNF4a gene promoter, influenc-
ing cells fate determination by inducing hepatoblast differentiation 
into BECs.82 This model demonstrates the crosstalk between HIP-
PO and TGF-β signaling pathways in the differentiation of mouse 
hepatoblasts into BECs.82–84

Liver regeneration is a primary context where the interplay be-
tween TGF-β and HIPPO pathways is evident. After PH in mice, 
the nuclear localization of SMAD2 and YAP increases in prolif-
erating hepatocytes undergoing partial EMT, correlating with the 
upregulation of SNAI1, ZEB1, aSMA, COL1a1, VIM, MMP9, and 
QSOX1 genes, and the downregulation of CDH1 (E-cadherin) and 
ALB genes. In this model, TGF-β and YAP1 cooperate to induce 
partial EMT in hepatocytes, which acquire fibroblast-like charac-
teristics, allowing hepatocytes to proliferate and manage anti-pro-
liferative signals present in the microenvironment.67 In a human 
cell line of HSCs, TAZ overexpression induces the upregulation of 
genes associated with fibrosis, such as TGFB1 and SNAI1.85 In a rat 
model of hepatic fibrosis induced by diethyl-nitrosamine, the nu-
clear co-localization of SMAD2/3 and YAP/TAZ increases, along 
with the upregulation of MMP2, MMP9, and TIMP1 proteins, and 
the downregulation of MMP1 protein.86 Additionally, in human 
hepatic fibrosis, TGF-β can promote the activation of PYK2 (pro-
line-rich tyrosine kinase 2), while SRC (Sarcoma kinase) activates 
the RHOA/ROCK axis, increasing YAP nuclear localization in an 
HSC cell line. Together, TGF-β and HIPPO pathways cooperate 
to upregulate genes such as CTGF and CYR61 in activated human 
HSC cell line.87 Intriguingly, SIRT6, a NAD-dependent deacety-
lase, has therapeutic potential as it protects against liver fibrosis 
by deacetylating key lysine residues on SMAD2, SMAD3, YAP, 
and TAZ, causing their inactivation.88–90 Thus, liver regeneration 
benefits from the interplay between TGF-β and HIPPO pathways.

The main types of liver cancer, ICC and HCC, are induced in 
the MOB1a/MOB1b-deficient mouse model. In this liver cancer 
model, there is an observed increase in the nuclear co-localization 
of SMAD2 and YAP/TAZ, along with increased levels of CTGF, 
TGF-β2, and TGF-β3 protein levels.91 Moreover, the upregulation 
of YAP, SMAD2/3, and TGF-β2, combined with the downregula-
tion of MOB1, may serve as a prognostic indicator of poor survival 
for ICC patients.92 In human HCC cells, TGF-β promotes an in-
crease in the nuclear localization of the SMAD2/3 complex, which 
can recruit P300 to promote the expression of TGFB1 and SOX4 
genes, associated with increased proliferation, migration, and inva-
sion of HCC cells. Intriguingly, the ectopic expression of TEAD4 
in these HCC cells allows TEAD4 to associate with SMAD2/3/4, 

competing with P300 to repress TGFB1 and SOX4 gene expres-
sion, through a YAP/TAZ-independent mechanism. This crosstalk 
between TGF-β/SMADs and HIPPO/TEAD4 in cancer is relevant 
as it inhibits specific gene expression signatures related to HCC 
progression.93

Conclusions
The interplay between the HIPPO and TGF-β canonical pathways 
plays a significant role in various hepatic contexts. In certain sce-
narios, the inactivation of the HIPPO pathway leads to the acti-
vation of its principal downstream effectors, the transcriptional 
cofactors YAP and TAZ. The activation of these cofactors can in-
tersect with the activation of the TGF-β/SMAD pathway, forming 
an axis termed SMAD/YAP/TAZ. This axis effectively governs 
specific gene expression signatures that may contribute to diverse 
physiological or pathological processes in the liver. Therefore, it is 
imperative to identify these genetic signatures to delineate poten-
tial targets for therapeutic interventions.
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